Synthesis and Antiplatelet Effects of ω -Aminoalkoxylxanthones

Chun-Nan Lin, shorong-shii Liou, shih-chen Lai, hsien-cheng Lin*, feng-nien Koț, hong-wen Liu‡ and che-ming tengț

School of Pharmacy, *School of Technology for Medical Sciences, ‡Department of Internal Medicine, Kaohsiung Medical College, Kaohsiung, Taiwan 807, ROC and †Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan 100, ROC

Abstract

A series of ω -aminoalkoxylxanthones were synthesized and tested in-vitro for their ability to inhibit aggregation of rabbit washed platelets and human platelet-rich plasma (PRP) induced by various inducers. Nine of these compounds showed more potent antiplatelet effects than natural norathyriol tetraacetate on collagen-induced aggregation. The various ω -aminoalkoxyl side chains of the synthesized compounds modified the antiplatelet effects. All the compounds tested in human PRP showed significant inhibition of secondary aggregation induced by adrenaline, suggesting that the antiplatelet effects of these compounds is mainly due to an inhibitory effect on thromboxane formation. These compounds at high concentration also cause vasorelaxing action in rat thoracic aorta.

Xanthones isolated from natural sources have been shown to be potent inhibitors of platelet aggregation (Teng et al 1989) and also vasorelaxing agents (Ko et al 1991a). Synthetic xanthones showed antiplatelet effects, reduced the blood pressure and heart rate, and attenuated isoprenaline-induced tachycardia in rats (Chen et al 1993). In the study of structure-activity relationships of various natural and synthetic xanthones, we found that some xanthonoxypropanolamines and related compounds had at least the same antiplatelet effects as natural norathyriol tetraacetate Lin et al 1990, 1992, 1993, 1994; Liou et al 1994). A series of $[2-[(\omega-aminoalkoxy)phenyl]-ethyl]benzenes has shown$ potent antiplatelet effects on collagen-induced aggregation (Kikumoto et al 1990). For the study of structure-activity relationships of various xanthone derivatives and their design as antithrombotic or antihypertensive agents, we have synthesized further ω -aminoalkoxylxanthones.

Materials and Methods

Platelet aggregation

Washed rabbit platelets were obtained from ethylene diamine tetraacetic acid (EDTA)-anticoagulated, platelet-rich plasma (PRP) according to the washing procedures described previously (Teng et al 1987). Human PRP was obtained from the supernatant after the centrifugation of blood mixed with 3.8% sodium citrate (1:9 to blood). Platelet numbers were counted by a Coulter Counter (model ZM) and adjusted to 4.5×10^8 platelets mL⁻¹. The platelet pellets were finally suspended in Tyrode solution containing (mM): NaCl 136.8; KCl 2.8; NaHCO₃ 1.9; MgCl₂ 2.1; NaH₂PO₄ 0.33; CaCl₂ 1.0 and glucose 11.2, with bovine serum albumin 0.35%. All glassware was siliconized. One

Correspondence: C.-N. Lin, School of Pharmacy, Kaohsiung Medical College, Kaohsiung, Taiwan 807, ROC.

minute before the addition of the aggregation inducer, PRP or the platelet suspension was stirred at $1200 \text{ rev min}^{-1}$. Aggregation was measured by the turbidimetric method (O'Brien 1962). The absorbance of PRP or the platelet suspension was taken as 0% aggregation and the absorbance of platelet-poor plasma or platelet-free Tyrode solution taken as 100% aggregation. The aggregation was measured by a Lumi-aggregometer (Chrono-Log Co., USA) connected to dual channel recorders. To eliminate the effect of the solvent on the aggregation, the final concentration of dimethylsulphoxide (DMSO) was fixed at 0.5%.

Aortic contraction

Wistar rats of either sex, 250-300 g, were killed by a blow to the head. The thoracic aorta was isolated and excess fat and connective tissue were removed. Vessels were cut into rings of about 5 mm in length, mounted in organ baths containing 5 mL Krebs solution, maintained at 37° C, and bubbled with a 95% O₂-5% CO₂ mixture. Two stainless-steel hooks were inserted into the aortic lumen; one was fixed while the other was connected to a transducer. Aorta were equilibrated in the medium for 90 min with three changes of Krebs solution and maintained under an optimal tension of 1 g before specific experimental protocols were initiated; contractions were recorded isometrically via a force displacement transducer connected to a Gould polygraph (Model 2400). The final concentration of DMSO was fixed at 0·1%.

Chemistry: synthetic methods

All melting points were uncorrected. IR spectra were recorded on a Hitachi model 260-30 IR spectrophotometer. ¹H and ¹³C NMR spectra [δ (ppm), J (Hz)] were obtained on a Varian Gemini 200 MHz FT-NMR spectrometer. Mass spectra were determined on a Jeol JMS-D-100 mass spectrometer. Elemental analyses were within $\pm 0.4\%$ of the theoretical values, unless otherwise noted.

$O(CH_2)_n NHR$							
Compound	n	R	Yield (%)	mp (°C)	Recrystallized solvent	Formula	Analysis
1	2	\neg	67	225-227	CH ₃ COOC ₂ H ₅	C ₁₈ H ₁₇ O ₃ N.HBr	C, H, N
2ª 3	3 3	-(CH ₂) ₂ CH ₃ -CH(CH) ₃) ₂	56 65	162–163 232–233	CHCl ₃ CH ₃ COOC ₂ H ₅	$C_{19}H_{21}O_3N.HBr$ $C_{19}H_{21}O_3N.HBr$	C, H, N C, H, N
4 ª	3	\neg	41	170-172	CHCl ₃ -MeOH	$C_{19}H_{19}O_3N.HBr$	C, H, N
5 ª	3	>	52	179–180	CHCl ₃ -MeOH	$\mathbf{C_{22}H_{25}O_{3}N.HBr}$	C, H, N
6 7	4 4	$-(CH_2)_2CH_3$ $-CH(CH_3)_2$	66 68	162–163 188–189	CH ₃ COOC ₂ H ₅ CH ₃ COOC ₂ H ₅	$\begin{array}{c} C_{20}H_{23}O_{3}N.HBr \\ C_{20}H_{23}O_{3}N.HBr \end{array}$	C, H, N C, H, N
8	4	\neg	61	170-172	CH ₃ COOC ₂ H ₅	$C_{20}H_{21}O_3N.HBr$	C, H, N
9	4	>	63	179-181	CH ₃ COOC ₂ H ₅	$\mathrm{C_{23}H_{28}O_3N.HBr}$	C, H, N
10 11	5 5	-(CH ₂) ₂ CH ₃ -(CH(CH ₃) ₂	64 68	162–163 168–169	CH ₃ COOC ₂ H ₅ CH ₃ COOC ₂ H ₅	$\begin{array}{c} C_{21}H_{25}O_{3}N.HBr\\ C_{21}H_{25}O_{3}N.HBr\end{array}$	C, H, N C, H, N
12	5	\neg	53	159-161	CH ₃ COOC ₂ H ₅	$C_{21}H_{23}O_3N.HBr$	C, H, N
13	5	-🔿	72	183-184	CH ₃ COOC ₂ H ₅	$C_{24}H_{30}O_3N.HBr$	C, H, N
14 15	6 6	$-(CH_2)_2CH_3$ $-CH(CH_3)_2$	61 53	191–192 131–132	CH ₃ COOC ₂ H ₅ CH ₃ COOC ₂ H ₅	$\begin{array}{c} C_{22}H_{27}O_{3}N.HBr\\ C_{22}H_{27}O_{3}N.HBr\end{array}$	C, H, N C, H, N
16	6	$\neg \bigtriangledown$	53	190-191	CH ₃ COOC ₂ H ₅	$C_{22}H_{25}O_3N.HBr$	C, H, N
17	6		62	191-192	CH ₃ COOC ₂ H ₅	$C_{25}H_{32}O_3N.HBr$	C, H, N

^aData from reference 4.

Procedure I

Preparation of 3-[2-(alkylamino)ethoxy]xanthone. To a solution of NaOH (0.20 g, 5.00 mmol) in H₂O (1 mL) was added *n*-butanol (60 mL), 3-hydroxyxanthone (1.00 g, 4.72 mmol), and 1,2-dibromoethane (1.00 mL, 11.60 mmol), and the mixture was stirred for 5h under reflux. The reaction mixture was evaporated and the organic material was extracted with CHCl₃. Extracts were washed with saline, and dried over Na₂SO₄. After evaporation of the solvent, the residual oil was dissolved in absolute ethanol (100 mL) and n-propylamine (1.50 mL, 18.25 mmol), isopropylamine (2.00 mL, 23.35 mmol), cyclopropylamine (1.50 mL, 21.84 mmol), or cyclohexylamine (2.0 mL, 17.50 mmol) and the mixture was stirred at 60-70°C for 5 h. The organic material was extracted with CHCl₃, and the extracts were washed with saline, dried over Na₂SO₄, and evaporated to a syrup, which was purified by column chromatography (silical gel; CH₂Cl₂-methanol, 9:1), for the cyclopropylamine derivatives a colourless powder 1 (0.79 g, 2.10 mmol) was obtained (Table 1).

3-[2-(Cyclopropylamino)ethoxy]xanthone (1). Physical data: see Table 1. IR (KBr): 3450, 1660, 1625 cm⁻¹. ¹H NMR (CDCl₃-CD₃OD): δ 0.83 (m, 2H, CH₂ in the cyclopropyl ring), 1.10 (m, 2H, CH₂ in the cyclopropyl ring), 2.69 (m, 1H, CH in the cyclopropyl ring), 3.51 (t, J = 4.8 Hz, 2H, NHC H_2), 4.43 (t, J = 5.2 Hz, 2H, OCH₂), 6.90 (d, J = 2.4 Hz, 1H, H-4), 6.93 (dd, J = 8.5, 2.4 Hz, 1H, H-2), 7.29 (m, 2H, H-6 and H-7), 7.63 (m, 1H, H-5), 8.10 (d, J = 8.5 Hz, 1H, H-1), 8.18 (dd, J = 8.0, 1.6 Hz, 1HH-8). ¹³C NMR (CDCl₃-CD₃OD): δ 4·1 (2 × CH₂ in the cyclopropyl ring), 31.1 (CH in the cyclopropyl ring), 47.9 (NHCH₂), 63.7 (OCH₂), 101.7 (C-4), 113.9 (C-2), 116.7 (C-9a), 118.2 (C-5), 122.0 (C-8a), 124.6 (C-7), 126.8 (C-8), 128.8 (C-1), 135.2) (C-6), 156.6 (C-10a), 158.4 (C-4a), 163.5 (C-3), 177.2 (C=O). EI-MS: m/z (%) 295 (5) (M⁺).

Procedure II

Preparation of 3-[3-(alkylamino)propoxy]xanthone. To a solution of NaOH was added n-butanol, 3-hydroxyxanthone as in procedure I, and 1,3-dibromopropane (1mL, 9.85 mmol), and the mixture was treated as in procedure I with isopropylamine to yield a colourless powder, 3 (0.484 g, 2.15 mmol) (Table 1).

3/3-(Isopropylamino)propoxy/xanthone (3). Physical data: see Table 1. IR (KBr): 3450, 1660, 1620 cm⁻¹. ¹H NMR $(CDCl_3 CD_3 OD)$: $\delta 1.35 (d, J = 6.6 Hz, 6H, 2 \times CH_3), 2.30$ (m, 2H, CH₂), $3\cdot10$ (t, J = $8\cdot0$ Hz, 2H NHCH₂), $3\cdot28$ (m, 1H, CH), $4\cdot14$ (t, J = $5\cdot8$ Hz, 2H, OCH₂), $6\cdot83$ (d, J = $2\cdot2$ Hz, 1H, H-4), $6\cdot86$ (dd, J = $8\cdot5$, $2\cdot2$ Hz, 1H, H-2), $7\cdot33$ (m, 2H, H-6 and H-7), $7\cdot63$ (m, 1H, H-5), $8\cdot03$ (d, J = $8\cdot5$ Hz, 1H, H-1), $8\cdot16$ (dd, J = $8\cdot0$, $1\cdot4$ Hz, 1H, H-8), 13 C NMR (CDCl₃-CD₃OD): $\delta 18\cdot5$ (2 × CH₃), $25\cdot6$ (CH₂), $42\cdot0$ (NHCH₂), $50\cdot7$ (CH), $65\cdot3$ (OCH₂), $100\cdot6$ (C-4), $113\cdot3$ (C-2), $115\cdot5$ (C-9a), $117\cdot5$ (C-5), $121\cdot3$ (C-8a), $123\cdot9$ (C-7), $126\cdot1$ (C-8), $127\cdot9$ (C-1), $134\cdot5$ (C-6), $156\cdot0$ (C-10a), $157\cdot9$ (C-4a), $163\cdot8$ (C-3), $176\cdot7$ (C=O). EI-MS: m/z (%) 311 (7) (M⁺).

Procedure III

Preparation of 3-[4-(alkylamino)butoxy]xanthone. To a solution of NaOH was added *n*-butanol, 3-hydroxyxanthone as in procedure I, and 1,4-dibromobutane (1.50 mL, 12.71 mmol), and the mixture was treated as in procedure I with the appropriate amine to yield **6**, a colourless powder (0.93 g, 2.28 mmol); **7**, a colourless powder (0.95 g, 2.35 mmol); **8**, a colourless powder (0.85 g, 2.11 mmol); and **9**, a colourless powder (0.20 g, 2.18 mmol) (Table 1).

3-[4-(Propylamino)butoxy]xanthone (6). Physical data: see Table 1. IR (KBr): 3400, 1620 cm⁻¹. ¹H NMR (CDCl₃-CD₃OD): δ 0·92 (t, J = 7·4 Hz, 3H, CH₃), 1·73 (m, 2H, CH₂CH₃), 1·89 (m, 4H, 2 × CH₂), 2·85 (t, J = 8·2 Hz, 2H, NCHH₂), 2·98 (t, J = 7·8 Hz, 2H, NHCH₂), 4·04 (t, J = 5·6 Hz, 2H, OCH₂), 6·79 (d, J = 2·2 Hz, 1H, H-4), 6·82 (dd, J = 8·5, 2·2 Hz, 1H H-2), 7·34 (m, 2H, H-6 and H-7), 7·62 (m, 1H, H-5), 8·09 (d, J = 8·6 Hz, 1H, H-1), 8·17 (dd, J = 8·0, 1·6 Hz, 1H, H-8). ¹³C NMR (CDCl₃-CD₃OD): δ 10·8 (CH₃), 19·2(CH₂CH₃), 22·9 (CH₂), 26·0 (CH₂), 47·2 (NHCH₂), 67·5 (OCH₂), 100·6 (C-4), 113·5 (C-2), 115·4 (C-9a), 117·6 (C-5), 121·5 (C-8a), 123·9 (C-7), 126·2 (C-8), 128·0 (C-1), 134·5 (C-6), 156·1 (C-10a), 158·0 (C-4a), 164·2 (C-3), 176·7 (C=O). EI-MS: m/z (%) 325 (5) (M⁺).

3-[4-(Isopropylamino)butoxy]xanthone (7). Physical data: see Table 1. IR (KBr): 3400, 1600 cm⁻¹. ¹H NMR (CDCl₃-CD₃OD): δ 1·37 (d, J = 6·6 Hz, 2 × CH₃), 1·95 (m, 4H, 2 × CH₂), 3·00 (t, J = 8·0 Hz, NHCH₂), 3·33 (m, 1H, CH), 4·11 (t, J = 5·8 Hz, 2H, OCH₂), 6·87 (d, J = 2·2 Hz, 1H, H-4), 6·90 (dd, J = 8·5, 2·2 Hz, 1H, H-2), 7·30 (m, 2H, H-6 and H-7), 7·70 (m, 1H, H-5), 8·16 (d, J = 8·5 Hz, 1H, H-1), 8·25 (dd, J = 8·0, 1·4 Hz, 1H, H-8). ¹³C NMR (CDCl₃-CD₃OD): δ 18·5 (2 × CH₃), 22·8 (CH₂), 25·9 (CH₂), 44·3 (NHCH₂), 50·4 (CH), 67·5 (OCH₂), 100·5 (C-4), 113·5 (C-2), 115·3 (C-9a), 117·6 (C-5), 121·4 (C-8a), 123·8 (C-7), 126·1 (C-8), 127·9) (C-1), 134·5 (C-6), 156·0 (C-10a), 158·0 (C-4a), 164·2 (C-3), 176·7 (C=O). EI-MS: m/z (%) 325 (5) (M⁺).

3-[4(-Cyclopropylamino) butoxy]xanthone (8). Physical data: see Table 1. IR (KBr): 3400, 1620 cm^{-1} . ¹H NMR (CD₃OD): δ 0.94 (m, 4H, 2 × CH₂ in the cyclopropyl ring), 1.96 (m, 4H, 2 × CH₂), 2.82 (m, 1H, CH in the cyclopropyl ring), 3.25 (m, 2H, NHCH₂), 4.19 (bs, 2H, OCH₂), 6.97 (dd, J = 8.6, 2.2 Hz, 1H, H-2), 7.00(d, J = 2.2 Hz, 1H, H-4), 7.46 (m, 2H, H-6 and H-7), 7.79 (m, 1H, H-5), 8.11 (d, J = 8.6 Hz, 1H, H-1), 8.20 (dd, 8.0, 1.6 H, 1H H-8). ¹³C NMR (CD₃OD): δ 4.1 (2 × CH₂ in the cyclopropyl ring), 23.9 (CH₂), 26.9 (CH₂), 31.1 (CH in the cyclopropyl ring), 68.8 (OCH₂), 101.8 (C-4), 114.8 (C-2), 116.3 (C-9a), 118.8

(C-5), 122·5 (C-8a), 125·1 (C-7), 127·0 (C-8), 128·8 (C-1), 135·9 (C-6), 157·4 (C-10a), 159·4 (C-4a), 165·9 (C-3), 177·9 (C=O). EI-MS: m/z (%) 323 (5) (M⁺).

3-[4-(Cyclohexylamino) butoxy]xanthone (**9**). Physical data: see Table 1. IR (KBr): 3450, 1650, 1620, 1600 cm⁻¹. ¹H NMR (CDCl₃-CD₃OD): δ 1·14–2·12 (m, 14H, 5 × CH₂ in the cyclohexyl ring and 2 × CH₂), 2·95 (m, 3H, CH in the cyclohexyl ring and NHCH₂), 4·06 (t, J = 5·6 Hz, 2H, OCH₂), 6·82 (d, J = 2·2 Hz, 1H, H-4), 6·84 (dd, J = 9·0, 2·4 Hz, 1H, H-2), 7·32 (m, 2H, H-6 and H-7), 7·64 (m, 1H, H-5), 8·12 (d, J = 9·0 Hz, 1H, H-1), 8·19 (dd, J = 8·6, 1·6 Hz, 1H, H-8). ¹³C NMR (CDCl₃-CD₃OD): δ 22·9 (CH₂), 24·3 (CH₂), 24·7 CH₂), 26·1 (CH₂), 28·9 (CH₂), 44·0 (NHCH₂), 57·1 (CH in the cyclohexyl ring), 67·6 (OCH₂), 100·6 (C-4), 113·5 (C-2), 115·5 (C-9a), 117·6 (C-5), 121·6 (C-8a), 123·9 (C-7), 126·3 (C-8), 128·1 (C-1), 134·5 (C-6), 156·1 (C-10a), 158·0 (C-4a), 164·2 (C-3), 176·6 (C=O). EI-MS: m/z (%) 365 (16) (M⁺).

Procedure IV

Preparation of 3-[5-(alkylamino)pentoxy]xanthone. To a solution of NaOH was added *n*-butanol, 3-hydroxyxanthone as in procedure I, and 1,5-dibromopentane (1.50 mL, 11.09 mmol), and the mixture was treated as in procedure I to yield **10**, a colourless powder (0.85 g, 2.03 mmol); **11**, a colourless powder (0.91 g, 2.16 mmol); **12** a colourless powder (0.70 g, 1.68 mmol); and **13**, a colourless powder (1.05 g, 2.28 mmol) (Table 1).

3-[5-(Propylamino)pentoxy]xanthone (10). Physical data see Table 1. IR (KBr): 3350, 1660, 1630 cm^{-1.} ¹H NMR (CDCl₃): δ 1·02 (t, J = 7·4 Hz, 3H, CH₃), 1·63 (m, 2H, CH₂CH₃), 1·99 (m, 6H, 3 × CH₂), 2·99 (m, 4H, 2 × NHCH₂), 4·04 (t, J = 6·2 Hz, 2H, OCH₂), 6·79 (d, J = 2·4 Hz, 1H, H-4), 6·90 (dd, J = 8·8, 2·4 Hz, 1H, H-2), 7·34 (m, 2H, H-6 and H-7), 7·65 (m, 1H, H-5), 8·20 (d, J = 8·8 Hz, 1H, H-1), 8·27 (dd, J = 8·0, 1·6 Hz, 1H, H-8). ¹³C NMR (CDCl₃): δ 11·4 (CH₃), 19·4 (CH₂CH₃), 23·4 (CH₂), 25·5 (CH₂), 28·4 (CH₂), 47·5 (NHCH₂), 49·4 (NHCH₂), 68·0 (OCH₂), 100·7 (C-4), 113·4 (C-2), 117·7 (C-5), 115·8 (C-9a), 121·9 (C-8a), 123·8 (C-7), 126·6 (C-8), 128·3 (C-1), 134·2 (C-6), 156·1 (C-10a), 158·0 (C-4a), 164·3 (C-3), 176·2 (C=O). EI-MS: m/z (%) 339 (6) (M⁺).

3-[5-(Isopropylamino) pentoxy]xanthone (11). Physical data: see Table 1. IR (KBr): 3450, 1660, 1630, 1610 cm⁻¹. ¹H NMR (CDCl₃): δ 1·51 (d, J = 6·6 Hz, 6H, 2 × CH₃), 1·60 (m, 2H, CH₂), 1·85 (m, 2H, CH₂), 2·10 (m, 2H, CH₂), 2·99 (m, 2H, NHCH₂), 3·43 (m, 1H, CH), 4·02 (t, J = 6·2 Hz, 2H, OCH₂), 6·77 (d, J = 2·2Hz, 1H, H-4), 6·89 (dd, J = 9·0, 2·2 Hz, 1H, H-2), 7·26-7·40 (m, 2H, H-6 and H-7), 7·63 (m, 1H, H-5), 8·16 (d, J = 9·0 Hz, 1H, H-1), 8·25 (dd, J = 8·0, 1·8 Hz, 1H, H-8). ¹³C NMR (CDCl₃): δ 19·1 (2 × CH₃), 23·5 (CH₂), 25·7 (CH₂), 28·4 (CH₂), 44·5 (NHCH₂), 50·8 (CH), 68·0 (OCH₂), 100·7 (C-4), 113·4 (C-2), 115·7 (C-9a), 117·6 (C-5), 121·9 (C-8a), 123·8 (C-7), 126·5 (C-8), 128·2 (C-1), 134·2 (C-6), 156·1 (C-10a), 158·0 (C-4a), 164·3 (C-3), 176·2 (C=O). EI-MS: m/z (%) 339 (14) (M⁺).

3-[5-(Cyclopropylamino)pentoxy]xanthone (12). Physical data: see Table 1. IR (KBr): 3450, 1660, 1630 cm⁻¹. ¹H NMR (CDCl₃): δ 0.87 (m, 2H, CH₂ in the cyclopropyl ring), 1.33 (m, 2H, CH₂ in the cyclopropyl ring), 1.63 (m, 2H, CH₂), 1.92 (m, 2H, CH₂), 2.07 (m, 2H, CH₂), 2.63 (m, 1H, CH in the cyclopropyl ring), 3.12 (t, J = 7.8 Hz, 2H, NHC H_2), 4.04 (t, J = 6.2 Hz, 2H, OCH₂), 6.80 (d, J = 2.3 Hz, 1H, H-4), 6.90 (dd, J = 8.8, 2.3 Hz, 1H, H-2), 7.37 (m, 2H, H-6 and H-7), 7.65 m, 1H, H-5), 8.19 (d, J = 8.8 Hz, 1H, H-1), 8.15 (dd, J = 8.0, 1.6 Hz, 1H, H-8). ¹³C NMR (CDCl₃): δ 4·2 (2 × CH₂ in the cyclopropyl ring), 23.9 (CH₂), 25.9 (CH₂), 28.9 (CH₂), 31.0 (CH in the cyclopropyl ring), 49.1 (NHCH₂), 68.5 (OCH₂), 101.2 (C-4), 114·0 (C-2), 116·2 (C-9a), 118·1 (C-5), 122·4 (C-8a), 124·3 (C-7), 127·1 (C-8), 128·7 (C-1), 134·8 (C-6), 156·6 (C-10a), 158.5 (C-4a), 164.8 (C-3), 176.7 (C=O), EI-MS: m/z (%) 337 $(9) (M^+).$

3-[5-(Cyclohexylamino)pentoxy]xanthone (13). Physical data: see Table 1. IR (KBr): 3450, 1660, 1630 cm⁻¹. ¹H NMR, (CDCl₃): δ 1·20–2·31 (m, 16H, 5 × CH₂ in the cyclohexyl ring and 3 × CH₂), 3·02 (m, 3H, CH in the cyclohexyl ring and NHCH₂), 4·03 (t, J = 6·0 Hz, 2H, OCH₂), 6·79 (d, J = 2·4 Hz, 1H, H-4), 6·90 (dd, J = 9·0, 2·4 H, 1H, H-2), 7·33 (m, 2H, H-6 and H-7), 7·64 (m, 1H, H-5), 8·19 (d, J = 9·0 Hz, 1H, H-1), 8·26 (dd, J = 8·0, 1·8 Hz, 1H, H-8). ¹³C NMR (CDCl₃). δ 23·5 (CH₂), 24·5 (CH₂), 24·7 (CH₂), 25·7 (CH₂), 28·4 (CH₂), 29·1 (CH₂), 100·7 (C-4), 113·4 (C-2), 115·7 (C-9a), 117·6 (C-5), 121·9 (C-8a), 123·8 (C-7), 126·5 (C-8), 128·2 (C-1), 134·2 (C-6), 156·1 (C-10a), 157·9 (C-4a), 164·3 (C-3), 176·2 (C=O). EI-MS: m/z (%) 379 (10) (M⁺).

Procedure V

Preparation of 3-[6-(alkylamino)hexoxy]xanthone. To a solution of NaOH was added *n*-butanol, 3-hydroxyxanthone as in procedure I, and 1,6-dibromohexane ($2\cdot00 \text{ mL}$, $13\cdot20 \text{ mmol}$), and the mixture was treated as in procedure I to yield 14, a colourless powder ($0\cdot78 \text{ g}$, $1\cdot79 \text{ mmol}$); 15, a colourless powder ($0\cdot67 \text{ g}$, $1\cdot55 \text{ mmol}$); 16, a colourless powder ($0\cdot67 \text{ g}$, $1\cdot55 \text{ mmol}$); and 17, a colourless powder ($0\cdot86 \text{ g}$, $1\cdot82 \text{ mmol}$) (Table 1).

3-[6-(Propylamino)hexoxy]xanthone (14). Physical data: see Table 1. IR (KBr): 3450, 1660, 1630 cm⁻¹. ¹H NMR (CDCl₃-CD₃OD): δ 0·92 (t, J = 7·5 Hz, 3H, CH₃), 1·43 (m, 4H, 2 × CH₂), 1·75 (m, 6H, CH₂CH₃ and 2 × CH₂), 2·85 (m, 4H, 2 × NHCH₂), 4·00 (t, J = 6·2 Hz, 2H, OCH₂), 6·80 (d, J = 2·2 Hz, 1H, H-4), 6·84 (dd, J = 8·8, 2·2 Hz, 1H, H-2), 7·32 (m, 2H, H-6 and H-7), 7·62 (m, 1H, H-5), 8·10 d, J = 8·8 Hz, 1H, H-1), 8·19 (dd, J = 8·0, 1·6 Hz, 1H, H-8), ¹³C NMR (CDCl₃-CD₃OD): δ 10·8 (CH₃), 19·2 (CH₂CH₃), 25·3 (CH₂), 25·6 (CH₂), 26·2 (CH₂), 28·5 (CH₂), 47·4 (NHCH₂), 68·2 (OCH₂), 100·5 (C-4), 113·6 (C-2), 115·3 (C-9a), 117·6 (C-5), 121·5 (C-8a), 123·8 (C-7), 126·3 (C-8), 127·9 (C-1), 134·4 (C-6), 156·1 (C-10a), 158·0 (C-4a), 164·6 (C-3), 176·7 (C=O). EI-MS: m/z (%) 353 (8) (M⁺).

3-[6-(Isopropylamino)hexoxy]xanthone (15). Physical data: see Table 1. IR (KBr): 3450, 1650, 1630 cm⁻¹. ¹H

NMR (CDCl₃): δ 1·52 (m, 10H, 2 × CH₃ and 2 × CH₂), 1·82 (m, 2H, CH₂), 2·04 (m, 2H, CH₂), 2·96 (m, 2H, NHC*H*₂), 3·38 (m, 1H, CH), 4·02 (t, J = 6·2 Hz, 2H, OCH₂), 6·79 (d, J = 2·4 Hz, 1H, H-4), 6·89 (dd, J= 8·9, 2·4 Hz, H-2), 7·34 (m, 2H, H-6 and H-7), 7·65 (m, 1H, H-5), 8·20 (d, J = 8·9 Hz, 1H, H-1), 8·27 (dd, J = 8·0, 1·7 Hz, 1H, H-8). ¹³C NMR (CDCl₃): δ 19·0 (2 × CH₃), 25·5 (CH₂), 25·8 (CH₂), 26·7 (CH₂), 28·8 (CH₂), 44·6 (NHCH₂), 50·7 (CH), 68·3 (OCH₂), 100·6 (C-4), 113·5 (C-2), 115·6 (C-9a), 117·6 (C-5), 121·9 (C-8a), 123·8 (C-7), 126·6 (C-8), 128·2 (C-1), 134·2 (C-6), 156·1 (C-10a), 158·0 (C-4a), 164·4 (C-3), 176·2 (C=O). EI-MS: m/z (%) 353 (27) (M⁺).

3-[6-(Cyclopropylamino) hexoxy] xanthone (16). Physical data: see Table 1. IR (KBr): 3450, 1660, 1630 cm⁻¹. ¹H NMR (CDCl₃-CD₃OD): δ 0.75 (m, 2H, CH₂ in the cyclopropyl ring), 0.92 (m, 2H, CH₂ in the cyclopropyl ring), 1.39 (m, 4H, $2 \times CH_2$), 1·71 (m, 4H, $2 \times CH_2$), 2·50 (m, 1H, CH in the cyclopropyl ring), 2.94 (m, 2H, NHCH₂), 3.99 (bs, 2H, OCH₂), 6.79 (d, J = 2.2 Hz, 1H, H-4), 6.82 (dd, J = 8.7, 2.2 Hz, 1H, H-2), 7.30 (m, 2H, H-6 and H-7), 7.60 (m, 1H, H-5), 8.08 (d, J = 8.7 Hz, 1H, H-1), 8.13 (dd, J = 8.0, 1.6 Hz, 1.4 Hz)1H, H-8). ¹³C NMR (CDCl₃-CD₃OD): δ 3·18 (CH₂ in the cyclopropyl ring), 3.22 (CH₂ in the cyclopropyl ring), 24.8(CH₂), 25·1 (CH₂), 25·2 (CH₂), 25·5 (CH₂), 30·1 (CH in the cyclopropyl ring), 68·1 (OCH2), 100·4 (C-4), 113·6 (C-2), 115·1 (C-9a), 117·5 (C-5), 121·3 (C-8a), 123·8 (C-7) 126·1 (C-8), 127.7 (C-1), 134.4 (C-6), 156.0 (C-10a), 158.0 (C-4a), 164.6 (C-3), 176.8 (C=O). EI-MS: m/z (%) 351 (7) (M⁺).

3-[6-(Cyclohexylamino)hexoxy]xanthone (17). Physical data: see Table 1. IR (KBr): 3450, 1660, 1630 cm⁻¹. ¹H NMR (CDCl₃): δ 1·21–2·31 (m, 18H, 5 × CH₂ in the cyclohexyl ring and 4 × CH₂), 2·98 (m, 3H, CH in the cyclohexyl ring and NHCH₂), 4·01 (t, J = 6·2 Hz, 2H, OCH₂), 6·79 (d, J = 2·3 Hz, 1H, H-4), 6·89 (dd, J = 8·9, 2·3 Hz, 1H, H-2), 7·34 (m, 2H, H-6 and H-7), 7·65 (m, 1H, H-5), 8·20 (d, J = 8·9 Hz, 1H, H-1), 8·27 (dd, J = 7·9, 1·5 Hz, 1H, H-8). ¹³C NMR (CDCl₃): δ 24·5 (CH₂), 24·7 (CH₂), 25·6 (CH₂), 25·8 (CH₂), 26·7 (CH₂), 28·8 (CH₂), 29·1 (CH₂), 44·5 (NHCH₂), 57·6 (CH in the cyclohexyl ring), 68·3 (OCH₂), 100·6 (C-4), 113·5 (C-2), 115·6 (C-9a), 117·6 (C-5), 121·9 (C-8a), 123·8 (C-7), 126·6 (C-8), 128·2 (C-1), 134·2 (C-6), 156·1 (C-10a), 158·0 (C-4a), 164·4 (C-3), 176·2 (C=O). EI-MS: m/z (%) (9) 393 (M⁺).

Results and Discussions

Compounds 2, 4, and 5 have been synthesized and reported (Liou et al 1994). Compounds 1, 3, 6–17 were synthesized (Scheme 1) by the method described in the previous report (Liou et al 1994). Briefly, these compounds were obtained by the reaction of the potassium salts of 3-hydroxyxanthone with 1, ω -dibromoalkane in t-butanol, then aminated with appropriate amines to give the final products (Scheme 1) (Kiku moto et al 1990).

The antiplatelet effects of 1, 3, and 6–17 were studied in the aggregation of washed rabbit platelets induced by thrombin (0·1 units mL⁻¹), arachidonic acid (100 μ M), collagen (10 μ g mL⁻¹) and platlet-activating factor (PAF) (2 ng mL⁻¹). As shown in Table 2, compounds 6, 7 (each

Compound	P			
	Thrombin	Arachidonic acid	Collagen	PAF
DMSO (control) 1 2 ^a 3 4 ^a 5 ^a 6 7 8 9 10 11 12 13 14	$\begin{array}{c} 90.6 \pm 2.7\\ 90.6 \pm 0.1\\ 51.0 \pm 11.0^{c}\\ 90.0 \pm 2.1\\ 20.2 \pm 1.0^{d}\\ 66.0 \pm 7.9^{c}\\ 0.0 \pm 0.0^{d}\\ 11.3 \pm 4.2^{d}\\ 92.3 \pm 0.7\\ 12.2 \pm 10.0^{d}\\ 84.5 \pm 0.3^{d}\\ 24.8 \pm 2.6^{d}\\ 97.2 \pm 2.3\\ 7.1 \pm 5.8^{d}\\ 17.5 \pm 7.2^{d} \end{array}$	$\begin{array}{c} 88 \cdot 7 \pm 0 \cdot 8 \\ 0 \cdot 0 \pm 0 \cdot 0 d \\ 5 \cdot 4 \pm 2 \cdot 8 d \\ 83 \cdot 4 \pm 2 \cdot 5 \\ 0 \cdot 0 \pm 0 \cdot 0 d \\ 2 \cdot 2 \pm 1 \cdot 1 d \\ 0 \cdot 0 \pm 0 \cdot 0 d \\ 0 \cdot 0 \pm 0 \cdot 0 d \\ 30 \cdot 8 \pm 6 \cdot 7 d \\ 0 \cdot 0 \pm 0 \cdot 0 d \\ 46 \cdot 3 \pm 13 \cdot 0 d \\ 0 \cdot 0 \pm 0 \cdot 0 d \\ 0 \cdot 0 \pm 0 \cdot 0 d \\ 0 \cdot 0 \pm 0 \cdot 0 d \\ 0 \cdot 0 \pm 0 \cdot 0 d \\ 0 \cdot 0 \pm 0 \cdot 0 d \\ 0 \cdot 0 \pm 0 \cdot 0 d \\ 0 \cdot 0 \pm 0 \cdot 0 d \\ 0 \cdot 0 \pm 0 \cdot 0 d \end{array}$	$\begin{array}{c} 89.6 \pm 0.8 \\ 17.9 \pm 14.6^{d} \\ 0.0 \pm 0.0^{d} \\ 84.6 \pm 1.7 \\ 0.0 \pm 0.0^{d} \\ 0.0 \pm 0.0^{d} \\ 0.0 \pm 0.0^{d} \\ 0.0 \pm 0.0^{d} \\ 17.2 \pm 8.6^{b} \\ 0.0 \pm 0.0^{d} \\ 19.3 \pm 12.2^{d} \\ 0.0 \pm 0.0^{d} \\ 51.6 \pm 7.8^{d} \\ 0.0 \pm 0.0^{d} \\ 0.0 \pm 0.0^{d} \end{array}$	$\begin{array}{c} 90.3 \pm 0.5 \\ 83.4 \pm 1.4^{d} \\ 6.4 \pm 3.8^{d} \\ 83.3 \pm 0.9 \\ 0.0 \pm 0.0^{d} \\ 4.2 \pm 3.4^{d} \\ 0.0 \pm 0.0^{d} \\ 0.0 \pm 0.0^{d} \\ 89.4 \pm 0.8 \\ 0.0 \pm 0.0^{d} \\ 58.3 \pm 11.9^{c} \\ 2.8 \pm 2.3^{d} \\ 89.3 \pm 1.9 \\ 0.0 \pm 0.0^{d} \\ 20.6 \pm 10.6^{d} \end{array}$
15 16 17 Aspirin	ND $21 \cdot 3 \pm 1 \cdot 9^d$ $92 \cdot 1 \pm 1 \cdot 9$ $91 \cdot 9 \pm 2 \cdot 5$	$\begin{array}{c} \text{ND} \\ 0.0 \pm 0.0 \text{d} \\ 71.8 \pm 4.5^{\text{c}} \\ 0.0 \pm 0.0^{\text{d}} \end{array}$	$\begin{array}{c} 72 \cdot 1 \pm 1 \cdot 6 \\ 0 \cdot 0 \pm 0 \cdot 0^{\rm d} \\ 49 \cdot 6 \pm 8 \cdot 8^{\rm c} \\ 85 \cdot 4 \pm 3 \cdot 9 \end{array}$	$\begin{array}{c} \text{ND} \\ 2 \cdot 2 \pm 1 \cdot 5^{d} \\ 65 \cdot 2 \pm 3 \cdot 6^{d} \\ 90 \cdot 5 \pm 1 \cdot 2 \end{array}$

Table 2. Effect of ω -aminoalkoxylxanthones on the platelet aggregation induced by thrombin, arachidonic acid, collagen and platelet-activating factor (PAF).

Platelets were preincubated with 1, 9 (each at 120 μ M), 4–7, 12, 14–17 (each at 240 μ M), 3 (<25 μ M), 4 (240 μ M), 8 (75 μ M), 10 (50 μ M), 11, 13 (each 150 μ M), aspirin (50 μ M) or DMSO (0.5%, control) at 37°C for 3 min, then thrombin (0.1 units mL⁻¹), arachidonic acid (100 μ M), collagen (10 μ g mL⁻¹) or PAF (2 ng mL⁻¹) was added. Percentages of aggrega-tion are presented as means ± s.e.m. (n = 3–6), ^bP < 0.05, ^cP < 0.01, ^dP < 0.001 as compared with the respective control value ND – not determined. compared with the respective control value. ND = not determined. ^aData from Liou et al (1994).

240 μ M), 9 (120 μ M), 11, 13 (each 150 μ M), and 14, 16 (each 240 μ M) all showed potent antiplatelet effects on the aggregation induced by thrombin, arachidonic acid, collagen, and PAF. Compound 1 (120 μ M) showed potent antiplatelet effects on arachidonic acid- and collagen-induced aggregation, while compound 10 (50 μ M) showed potent antiplatelet effect on collagen-induced aggregation. Compound 12 (240 μ M) only showed potent antiplatelet effect on arachidonic acid-induced aggregation. In comparison with data previously reported for 4 (Liou et al 1994), norathyriol (18) (Lin et al 1992), and norathyriol tetraacetate (18 A) (Teng et al 1989; Lin et al 1992), 6, 12, 13, and 14 all had less potent antiplatelet effects than 4 and 18 A, when arachidonic acid was used as the aggregating agent (Table 3). This indicates that the increasing carbon number of oxyalkyl side chain does not enhance the antiplatelet effects when arachidonic

SCHEME 1.

acid is used as the aggregating agent. In collagen-induced platelet aggregation, increasing the length of oxyalkyl side chain of cyclopropylaminoalkoxylxanthones to six carbon atoms showed enhancement of antiplatelet effects, but increasing the length of oxyalkyl side chain of propylaminoalkoxylxanthones (from three carbon atoms to five carbon atoms) did not enhance the antiplatelet effects (Table 3). The oxyalkyl side chains with four and

Table 3. IC50 values of ω -aminoalkoxylxanthones on the platelet aggregation induced by arachidonic acid, collagen and adrenaline.

Reagent	IC50 (µм)			
	Arachidonic acid	Collagen	Adrenaline	
1	ND	37.0	196-1	
2	ND	193-3	281.3	
3	ND	ND	66·1	
4	13.0	83.3	284.5	
5	ND	116.4	65.5	
6	90.0	87.4	156-1	
7	ND	68·7	28.1	
8	ND	ND	71.1	
9	ND	35.7	70.5	
10	ND	38.5	208.8	
11	ND	43.7	57.5	
12	77.4	>100	28.5	
13	96-5	75.9	45.8	
14	169.7	4 4·7	40.2	
15	Agonist ^b	ND	26.9	
16	ŇD	28.6	250.4	
17	ND	ND	115.6	

^bMarked agonist activity was observed at $300 \,\mu\text{M}$. ND = not determined.

Table 4. Effect of ω -aminoalkoxylxanthones on aggregation of human platelet-rich plasma (PRP) induced by ADP, collagen or adrenaline.

Compound	Platelet aggregation (%)				
	ADP	Collagen	Adrenaline		
DMSO (control)	97.3 ± 1.9	97.7 ± 1.6	95.6 ± 2.0		
1	ND	ND	$21.8 \pm 3.3^{\circ}$		
2	, ND	ND	$24.3 \pm 6.0^{\circ}$		
3	$22.6 \pm 5.4^{\circ}$	ND	0.0 ± 0.0 c		
4	ND	ND	0.0 ± 0.0 c		
5	$68.7 \pm 1.8^{\circ}$	0.0 ± 0.0 c	$18.9 \pm 5.3^{\circ}$		
6	ND	ND	$11.9 \pm 2.0^{\circ}$		
7	$44.4 \pm 8.6^{\circ}$	ND	$45 \cdot 1 \pm 1 \cdot 7^{\circ}$		
8	ND	ND	$0.0 \pm 0.0^{\circ}$		
9	ND	$20.2 \pm 10.3^{\mathrm{b}}$	8.1 ± 5.7 °		
10	$55.8 \pm 2.8^{\circ}$	0.0 ± 0.0 c	0.0 ± 0.0 c		
11	72.5 ± 7.4^{a}	35.4 ± 25.0^{a}	19·4 ± 4·3°		
12	ND	81.5 ± 6.8	$16.0 \pm 1.2^{\circ}$		
13	$11.0 \pm 4.6^{\circ}$	0.0 ± 0.0 c	0.0 ± 0.0 c		
14	55.8 ± 3.7^{b}	0.0 ± 0.0 c	0.0 ± 0.0 c		
15	$2.8 \pm 2.8^{\circ}$	$0.0 \pm 0.0^{\circ}$	0.0 ± 0.0 c		
16	$77.1 \pm 1.5^{\circ}$	$23.0 \pm 7.8^{\circ}$	$35.8 \pm 2.0^{\circ}$		
17	$46.9 \pm 4.8^{\circ}$	$0.0 \pm 0.0^{\circ}$	$0.0 \pm 0.0^{\circ}$		
Aspirin	84.4 ± 1.2	39.6 ± 15.4 ^a	74.0 ± 3.2		

Platelets were preincubated with 1–4, 7, 10, 12, 14–17 (each at 300 μ M), 5, 6, 8, 9, 11, 13 (each at 150 μ M), aspirin (50 μ M), or DMSO (0.5%, control) at 37°C for 3 min, then ADP (20 μ M), collagen (10 μ g mL⁻¹) or adrenaline (5 μ M) was added. Percentages of aggregation are presented as means ± s.e.m. (n = 3–5). ND = not determined. ^aP < 0.05, ^bP < 0.01, ^cP < 0.001 as compared with the respective control value.

five carbon atoms of cyclohexylaminoalkoxylxanthones and isopropylaminoalkoxylxanthones showed more potent antiplatelet effects, when collagen was used as the aggregating agent (Table 3). Aspirin was used in this study as positive control.

It was found that aspirin (50 μ M) inhibited completely the

FIG. 1. Effect of 12 on aggregation of human platelet-rich plasma (PRP) induced by adrenaline. PRP was incubated with 12 at various concentrations or DMSO (0.5%) for 1 min, then adrenaline (5 μ M) was added to trigger the aggregation.

platelet aggregation induced by arachidonic acid but not that induced by thrombin, collagen, or PAF (Table 2).

The antiplatelet effects of these compounds were also studied on the aggregation of human PRP induced by ADP ($20 \mu M$), collagen ($10 \mu g m L^{-1}$), and adrenaline ($5 \mu M$). As shown in Table 4, all compounds showed potent antiplatelet effects on adrenaline-induced aggregation; 5, 9, 10, 11, 13, 14, 15, 16, and 17 showed potent antiplatelet effects on collagen-induced aggregation and 3, 13, and 15 showed potent antiplatelet effects on ADPinduced aggregation. More experiments were performed to study the effects of these compounds on adrenaline-induced human platelet aggregation at various concentrations. Compounds 12 and 15 showed the most potent antiplatelet effects when adrenaline was used as the aggregation agent (Table 3).

Aspirin was also used in this study as a positive control. It was found (Table 4) that aspirin ($50 \mu M$) strongly inhibited the platelet aggregation induced by adrenaline but not that induced by ADP and collagen. In human PRP, these compounds prevented secondary aggregation induced by adrenaline (Fig. 1). This suggests that their mechanism of

Table 5. Effect of various ω -aminoalkoxylxanthones on high K⁺- and Ca²⁺-induced and noradrenaline-induced contraction of rat thoracic aorta.^a

Compound	K^+ (80 mм) + Ca ²⁺ (1.9 mм)	Noradrenaline		
		(3 µм) Phasic	(3 µм) Tonic	
Control 1 (30 μM) 2 (300 μM) 3 (30 μM) 4 (60 μM) 5 (100 μM) 6 (300 μM) 7 (300 μM) 8 (60 μM) 9 (30 μM) 10 (50 μM) 11 (150 μM) 13 14 (30 μM) 15 (60 μM) 16 (120 μM)	100 ± 8.6 104.5 ± 0.6 17.9 ± 0.04 103.3 ± 0.1 77.1 ± 8.8 13.7 ± 2.44 3.7 ± 2.64 5.6 ± 0.74 72.9 ± 1.5 $37.4 \pm 3.8c$ $38.8 \pm 2.3c$ $29.3 \pm 16.5c$ 61.1 ± 7.9 ND 76.1 ± 4.6 $45.3 \pm 5.9c$ $11.1 \pm 5.0d$	$\begin{array}{c} 100\pm12\cdot2\\ 73\cdot9\pm3\cdot3\\ 6\cdot8\pm0\cdot6^{d}\\ 98\cdot5\pm2\cdot9\\ 100\pm0\cdot0\\ 37\cdot5\pm8\cdot8^{c}\\ 0\cdot0\pm0\cdot0^{d}\\ 6\cdot9\pm0\cdot2^{d}\\ 77\cdot0\pm4\cdot5\\ 88\cdot5\pm8\cdot2\\ 42\cdot9\pm10\cdot1^{c}\\ 7\cdot1\pm5\cdot1^{d}\\ 101\cdot7\pm8\cdot2\\ \text{ND}\\ 81\cdot3\pm0\cdot0\\ 76\cdot3\pm8\cdot9^{b}\\ 26\cdot7\pm2\cdot4^{c}\\ \end{array}$	$\begin{array}{c} 100\pm7.9\\ 73.7\pm7.1\\ 2.8\pm0.3d\\ 102.8\pm0.4\\ 111.4\pm8.0\\ 35.8\pm0.6d\\ 0.0\pm0.0d\\ 2.8\pm0.1d\\ 62.7\pm3.9\\ 90.1\pm8.7\\ 27.4\pm7.6d\\ 4.1\pm2.9d\\ 85.0\pm7.1\\ \text{ND}\\ 103.4\pm5.6\\ 77.5\pm12.4\\ 13.7\pm0.2d\\ 13.7\pm0.2d\\ \end{array}$	

^aRat aorta was preincubated with various ω -aminoalkoxylxanthones or DMSO (0·1%, control) at 37°C for 15 min; then high K⁺ (80 mM) and Ca²⁺ (1·9 mM) or noradrenaline (3 μ M) was added. Percentages of the contraction were calculated and presented as means \pm s.e.m. (n = 3), ND = not determined. ^bP < 0.05, ^cP < 0.01, ^dP < 0.001 as compared with the respective control values.

action is chiefly by the inhibition of thromboxane formation (Weiss 1983). In the rat thoracic aorta, most of these compounds at high concentrations depressed markedly the contractions induced by Ca^{2+} (1.9 mM) in high-K⁺ (80 mM) medium and by noradrenaline $(3 \mu M)$ (Table 5). Norathyriol and apigenin, a natural xanthone and a flavonoid, respectively, markedly inhibited arachidonic acid- and collageninduced aggregation by inhibiting thromboxane A2 formation in rabbit washed platelets (Teng et al 1988, 1989). In rat thoracic aorta, they also inhibited K+- and noradrenalineinduced contractions by suppression of Ca2+ influx (Ko et al 1991a, b). Thus, these compounds possess antiplatelet and vasorelaxing actions similar to those of natural norathyriol and apigenin. The activity in PRP represents the functional antagonist property in a physiologically relevant medium and the activity in the rat thoracic aorta represents antagonism on a non-platelet site of the vascular system. These dual activities show that these compounds may be developed as antithrombotic agents.

Acknowledgements

The authors are indebted to financial support from National Sciences Council, ROC (NSC 82-0420-B037-008-M13) and Public Health, Executive Yuan, ROC (DOH 82-HR-C18).

References

- Chen, I. J., Liou, S. J., Liou, S. S., Lin, C. N. (1993) Xanthonol: a calcium channel and β -adrenoceptor. Gen. Pharmacol. 24: 1425–1433
- Kikumoto, R., Hara, H., Ninomiya, K., Osakabe, M., Sugano, M., Fukami, H., Tamao, Y. (1990) Synthesis and platelet aggregation inhibitory and antithrombotic properties of [2[[ω-aminoalkoxyphenyl]ethyl]benzenes. J. Med. Chem. 33: 1818–1823

- Ko, F. N., Lin, C. N., Liou, S. S., Huang, T. F., Teng, C. M. (1991a) Vasorelaxation of rat thoracic aorta caused by norathyriol isolated from Gentianaceae. Eur. J. Pharmacol. 192: 133–139
- Ko, F. N., Huang, T. F., Teng, C. M. (1991b) Vasodilatory action mechanisms of apigenin isolated from *Apium graveolens* in rat thoracic aorta. Biochim. Biophys. Acta 1115: 69–74
- Lin, C. N., Teng, C. M., Liou, S. S., Ko, F. N. (1990) γ-Pyrone compounds. 3. Synthesis and antiplatelet effects of norathyriol derivatives. J. Chin. Med. 1: 120–128
- Lin, C. N., Liou, S. S., Ko, F. N., Teng, C. M. (1992) γ-Pyrone compounds. 2. Synthesis and antiplatelet effects of tetraoxygenated xanthones. J. Pharm. Sci. 81: 1109-1112
- Lin, C. N., Liou, S. S., Ko, F. N., Teng, C. M. (1993) γ-Pyrone compounds. 4. Synthesis and antiplatelet effects of monooxygenated and dioxygenated xanthones and xanthonoxypropanolamines. J. Pharm. Sci. 82: 11-16
- Lin, C.-N., Fang, S.-C., Lin, H.-C., Ko, F.-N., Shieh, B.-J., Liu, H.-W., Teng, C.-M. (1994) Studies on the synthesis of some xanthonoid derivatives possessing antiplatelet effect. J. Pharm. Pharmacol. 46: 917-927
- Liou, S. S., Teng, C. M., Ko, F. N., Lin, C. N. (1994) γ-Pyrone compounds. 5. Synthesis and antiplatelet effects of xanthonoxypropanolamines and related compounds. J. Pharm. Sci. 83: 391-395
- O'Brien, J. R. (1962) Platelet aggregation. II. Some results from a new method of study. J. Clin. Pathol. (London) 15: 452-455
- Teng, C. M., Chen, W. Y., Ko, W. C., Ouyang, C. (1987) Antiplatelet effect of butylidenephthalide. Biochim. Biophys. Acta 924: 375–382
- Teng, C. M., Lee, L. G., Ko, F. N., Huang, T. F. (1988) Inhibition of platelet aggregation by apigenin from *Apium graveolens*. Asia Pacific J. Pharmacol. 3: 85–89
- Teng, C. M., Lin, C. N., Ko, F. N., Cheng, K. L., Hung, T. F. (1989) Novel inhibitory actions on platelet thromboxane and inositol phosphate formation by xanthone and their glycoside. Biochem. Pharmacol. 38: 3791-3795
- Weiss, H. J. (1983) Antiplatelet drugs: pharmacological aspects, In: Platelets: Pathophysiology and Antiplatelet Drug Therapy. Alan R Liss, Inc., New York, p. 46